Complex logarithm identities ของ รายชื่อเอกลักษณ์ลอการิทึม

The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface. A single valued version called the principal value of the logarithm can be defined which is discontinuous on the negative x axis and equals the multivalued version on a single branch cut.

Definitions

The convention will be used here that a capital first letter is used for the principal value of functions and the lower case version refers to the multivalued function. The single valued version of definitions and identities is always given first followed by a separate section for the multiple valued versions.

ln(r) is the standard natural logarithm of the real number r.Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (-π, π].Arg(z) is the principal value of the arg function, its value is restricted to (-π, π]. It can be computed using Arg(x+iy)= atan2(y, x). Log ⁡ ( z ) = ln ⁡ ( | z | ) + i Arg ⁡ ( z ) {\displaystyle \operatorname {Log} (z)=\ln(|z|)+i\operatorname {Arg} (z)} e Log ⁡ ( z ) = z {\displaystyle e^{\operatorname {Log} (z)}=z}

The multiple valued version of log(z) is a set but it is easier to write it without braces and using it in formulas follows obvious rules.

log(z) is the set of complex numbers v which satisfy ev = zarg(z) is the set of possible values of the arg function applied to z.

When k is any integer:

log ⁡ ( z ) = ln ⁡ ( | z | ) + i arg ⁡ ( z ) {\displaystyle \log(z)=\ln(|z|)+i\arg(z)} log ⁡ ( z ) = Log ⁡ ( z ) + 2 π i k {\displaystyle \log(z)=\operatorname {Log} (z)+2\pi ik} e log ⁡ ( z ) = z {\displaystyle e^{\log(z)}=z}

Constants

Principal value forms:

Ln ⁡ ( 1 ) = 0 {\displaystyle \operatorname {Ln} (1)=0} Ln ⁡ ( e ) = 1 {\displaystyle \operatorname {Ln} (e)=1}

Multiple value forms, for any k an integer:

log ⁡ ( 1 ) = 0 + 2 π i k {\displaystyle \log(1)=0+2\pi ik} log ⁡ ( e ) = 1 + 2 π i k {\displaystyle \log(e)=1+2\pi ik}

Summation

Principal value forms:

Log ⁡ ( z 1 ) + Log ⁡ ( z 2 ) = Log ⁡ ( z 1 z 2 ) ( mod 2 π i ) {\displaystyle \operatorname {Log} (z_{1})+\operatorname {Log} (z_{2})=\operatorname {Log} (z_{1}z_{2}){\pmod {2\pi i}}} Log ⁡ ( z 1 ) − Log ⁡ ( z 2 ) = Log ⁡ ( z 1 / z 2 ) ( mod 2 π i ) {\displaystyle \operatorname {Log} (z_{1})-\operatorname {Log} (z_{2})=\operatorname {Log} (z_{1}/z_{2}){\pmod {2\pi i}}}

Multiple value forms:

log ⁡ ( z 1 ) + log ⁡ ( z 2 ) = log ⁡ ( z 1 z 2 ) {\displaystyle \log(z_{1})+\log(z_{2})=\log(z_{1}z_{2})} log ⁡ ( z 1 ) − log ⁡ ( z 2 ) = log ⁡ ( z 1 / z 2 ) {\displaystyle \log(z_{1})-\log(z_{2})=\log(z_{1}/z_{2})}

Powers

A complex power of a complex number can have many possible values.

Principal value form:

z 1 z 2 = e z 2 Log ⁡ ( z 1 ) {\displaystyle {z_{1}}^{z_{2}}=e^{z_{2}\operatorname {Log} (z_{1})}} Log ⁡ ( z 1 z 2 ) = z 2 Log ⁡ ( z 1 ) ( mod 2 π i ) {\displaystyle \operatorname {Log} {\left({z_{1}}^{z_{2}}\right)}=z_{2}\operatorname {Log} (z_{1}){\pmod {2\pi i}}}

Multiple value forms:

z 1 z 2 = e z 2 log ⁡ ( z 1 ) {\displaystyle {z_{1}}^{z_{2}}=e^{z_{2}\log(z_{1})}}

Where k1, k2 are any integers:

log ⁡ ( z 1 z 2 ) = z 2 log ⁡ ( z 1 ) + 2 π i k 2 {\displaystyle \log {\left({z_{1}}^{z_{2}}\right)}=z_{2}\log(z_{1})+2\pi ik_{2}} log ⁡ ( z 1 z 2 ) = z 2 Log ⁡ ( z 1 ) + z 2 2 π i k 1 + 2 π i k 2 {\displaystyle \log {\left({z_{1}}^{z_{2}}\right)}=z_{2}\operatorname {Log} (z_{1})+z_{2}2\pi ik_{1}+2\pi ik_{2}}

ใกล้เคียง

รายชื่อตอนในยอดนักสืบจิ๋วโคนัน (แอนิเมชัน) รายชื่อสถานีรถไฟ สายใต้ รายชื่อตอนในวันพีซ (อนิเมะ) รายชื่อตัวละครในวันพีซ รายชื่อเขตของกรุงเทพมหานคร รายชื่อสัตว์ รายชื่อตัวละครในยอดนักสืบจิ๋วโคนัน รายชื่อสถาบันอุดมศึกษาในประเทศไทย รายชื่อตัวละครในเกิดใหม่ทั้งทีก็เป็นสไลม์ไปซะแล้ว รายชื่อสถานีรถไฟ สายเหนือ